

A fuzzy theory of types

Shreya Arya, Greta Coraglia, Paige North, Sean O'Connor, Hans Riess, Ana Tenório

3rd ItaCa Workshop

21/12/2022

Motivation: opinion dynamics

We need

types and terms, because one opinion might have multiple proofs/reasons;

fuzzy logic, because opinions are many-valued.

$$\Gamma \vdash r :_{\alpha} O$$

"Knowing Γ , I believe O because of r with confidence α ."

Motivation: opinion dynamics

types and terms

fuzzy logic

	binary	fuzzy
propositions	{0,1}	[O, 1]
types	Set	$\Sigma_{S:\mathbf{Set}} S \rightarrow [0, 1]$

Confidence

What structure do we need on [0, 1]?

Definition

A commutative monoid $\mathbb{M} = (M, \cdot, 1)$ is

- ordered if there is a partial order \leq on M such that $m \leq n$ implies $m \cdot x \leq n \cdot x$ for all $x \in M$;
- unitally bounded if \leq has a top element and that is 1;
- ▶ complete if for each $m, n \in M$ there is $n^m \in M$ such that

$$x \le n^m$$
 iff $x \cdot m \le n$ for all $x \in M$.

We call n^m the internal hom of m and n.

Commutative ordered monoids

- ▶ $2 = ({0, 1}, \cdot, 1, \leq)$, with \cdot and \leq inherited by the usual ones on the reals
- ▶ $\mathbb{I} = ([0, 1], \cdot, 1, \leq)$, as above
- ▶ $\mathbb{O}_X = (\mathcal{O}(X), \cap, X, \subseteq)$, where $\mathcal{O}(X)$ is the set of open subsets of X
- ▶ $\mathbb{L} = ([0, \infty], +, 0, \ge)$, with + and \ge inherited by the usual ones on the reals

more generally

- every commutative unital quantale
- every complete Heyting algebra (use \land for \cdot)

These are actually all unitally bounded and complete, for example:

✓ in I, $n^m = \min\{\frac{n}{m}, 1\}$ (thinking of the fraction in [0, ∞] and defining $\frac{n}{0} = \infty$) ✓ in a quantale, $n^m = \bigvee_{x \cdot m \le n} x$

Fuzzy sets with values in $\mathbb M$

Definition

Call $\mathbf{Set}(\mathbb{M})$ the category having

▶ for objects $X = (X^{\circ}, |-|_X)$ where X° is a set and $|-|_X$ is a function $X^{\circ} \rightarrow M$;

▶ morphisms $f : X \to Y$ are functions $f : X^{\circ} \to Y^{\circ}$ such that

 $|x|_X \le |f(x)|_Y$

for all $x \in X^{\circ}$.

✓ for I we get sets with a *membership function*, we can interpret it to be

 $|x|_X = \alpha$ iff x is a member of X with confidence α

	binary	fuzzy
propositions	{0,1}	[O, 1]
types	Set	$\Sigma_{S:\mathbf{Set}} S \rightarrow [0, 1]$

	binary	fuzzy
propositions	{0,1}	Μ
types	Set	$Set(\mathbb{M})$

What do categories have to do with type theory?

Type theories
$$\, \overline{\,} \longrightarrow \,$$
 Set-Categories

Fuzzy type theories \implies **Set**(\mathbb{M})-Categories

Our strategy: enrich the categories, read the type theory!

Enriching categories: from Set to $Set(\mathbb{M})$

Lemma

Both \mathbb{M} and $\textbf{Set}(\mathbb{M})$ support a monoidal structure.

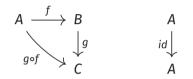
```
For example, for Set(\mathbb{M}):
```

$$U \otimes V : \quad (U \otimes V)^{\circ} = U^{\circ} \times V^{\circ}, \ |(u, v)|_{U \otimes V} = |u|_{U} \cdot |v|_{V}$$
$$I : \quad (\{*\}, const_{1})$$

Then we can use them as an enrichement:

- ▶ a 2-category has $(P \le Q) = \underline{hom}(P, Q) \in \{0, 1\}$ hence propositions;
- ► a I-category has $(P \leq_{\alpha} Q) = \underline{hom}(P, Q) = \{\alpha\}$ hence "fuzzy propositions";
- ▶ a L-category is a Lawvere metric space, $d(x, y) \in [0, \infty]$ and $d(x, y) + d(y, z) \ge d(x, z)$;
- ▶ a **Set**(M)-category ...

Composition vs monoidal product



 $\frac{\hom(A, B) \otimes \hom(B, C) \to \hom(A, C), \quad |f| \cdot |g| \le |g \circ f|}{I \to \hom(A, A), \quad 1 \le |id|}$

Display-map categories

Definition (Taylor 1999, Hyland-Pitts 1987)

A display-map category is a pair $(\mathcal{C}, \mathcal{D})$ with \mathcal{C} a category and $\mathcal{D} = \{p_A : \Gamma . A \to \Gamma\}$ a class of morphisms in \mathcal{C} called displays or projections such that:

- **1.** C has a terminal object 1;
- **2.** for each $p_A : \Gamma . A \to \Gamma$ in \mathcal{D} and $s : \Delta \to \Gamma$ in \mathcal{C} , there exists a choice of a pullback of p_A along s and it is again in \mathcal{D} ,

3. $\ensuremath{\mathcal{D}}$ is closed under pre and post-composition with isomorphisms.

Display-map categories

Definition (Taylor 1999, Hyland-Pitts 1987)

A display-map category is a pair $(\mathcal{C}, \mathcal{D})$ with \mathcal{C} a category and $\mathcal{D} = \{p_A : \Gamma . A \to \Gamma\}$ a class of morphisms in \mathcal{C} called displays or projections such that:

- **1.** \mathcal{C} has a terminal object;
- **2.** for each $p_A : \Gamma . A \to \Gamma$ in \mathcal{D} and $s : \Delta \to \Gamma$ in \mathcal{C} , there exists a choice of a pullback of p_A along s and it is again in \mathcal{D} ,
- 3. $\ensuremath{\mathcal{D}}$ is closed under pre and post-composition with isomorphisms.

$$\Gamma \vdash A \text{ type} \qquad \Gamma.A \xrightarrow{p_A} \Gamma$$
$$\Gamma \vdash s:A \qquad \Gamma.A \xrightarrow{p_A} \Gamma$$

substitution pullback along projections

Intuition

a $\textbf{Set}(\mathbb{M})\text{-}category~\mathcal{C}$	an agent in the system
a context	a set of beliefs
a type (in context)	a belief (and its premises)
a term of type A	a proof of the belief A

- we want definite beliefs \Rightarrow non-fuzzy types
- ▶ but their reasons might be subject to uncertainty \Rightarrow fuzzy terms

Fuzzy display-map categories

Definition

A fuzzy display-map category is a pair $(\mathcal{C}, \mathcal{D})$ with \mathcal{C} a **Set**(\mathbb{M})-category and $\mathcal{D} = \{p_A : \Gamma.A \rightarrow \Gamma\}$ a class of morphisms in \mathcal{C} called fuzzy displays or fuzzy projections such that:

- **1.** \mathcal{C} has a terminal object;
- 2. for each $p_A : \Gamma . A \to \Gamma$ in \mathcal{D} and $s : \Delta \to \Gamma$ in \mathcal{C} , there exists a choice of a weighted pullback of p_A along s and its underlying map is again in \mathcal{D} ,
- 3. $\ensuremath{\mathcal{D}}$ is closed under pre and post-composition with isomorphisms;
- 4. for all A, $|p_A|_{\underline{hom}(\Gamma,A,\Gamma)} = 1$.

Projections and sections

Types are not fuzzy

For all A, $|p_A|_{\underline{hom}(\Gamma,A,\Gamma)} = 1$.

$$\Gamma \xrightarrow{id} \\ s \xrightarrow{} \Gamma.A \xrightarrow{p_A} \Gamma$$

Definition

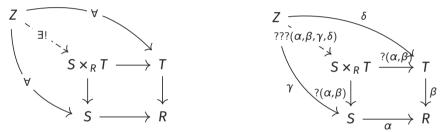
We say *s* is a α -section of p_A if *s* is a section of p_A and $|s| \ge \alpha$.

$$\Gamma \vdash s :_{\alpha} A$$
 and we have $\frac{\Gamma \vdash s :_{\alpha} A}{\Gamma \vdash s :_{\beta} A}$ for all $\beta \le \alpha$

From now on, we just discuss the case of $\mathbb{M} = \mathbb{I}$. Notice that all of the following results extend to the general case.

Substituting with uncertainty: weighted pullbacks

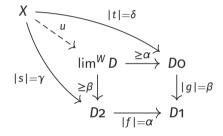
What is a pullback in **Set**(I)?



What do we ask of maps $S \leftarrow S \times_R T \rightarrow T$? Here is where we pick weights. What happens to the map induced by the universal property of the pullback?

Substituting with uncertainty: weighted pullbacks

(Many calculations you don't want to see, just know they involve this guy: $\hom_{\mathcal{C}}(X, \lim^{W} D) \cong \int_{\mathcal{D}} [W-, \underline{\hom}(X, D-).)$



$$|u| = \min\left(1, \frac{\gamma}{\beta}, \frac{\delta}{\alpha}\right)$$

Rules for fuzzy type theory

$$\frac{\Gamma \vdash A \text{ type}}{\vdash \nabla, x : A \text{ ctx}} (C-\text{Emp}) \qquad \frac{\Gamma \vdash A \text{ type}}{\vdash \Gamma, x : A \text{ ctx}} (C-\text{Ext}) \qquad \frac{\vdash \Gamma, x : A, \Delta \text{ ctx}}{\Gamma, x : A, \Delta \vdash x :_1 A} (\text{Var})$$

$$provided \text{ that } \beta \le \alpha, \qquad \frac{\Gamma \vdash t :_{\alpha} A}{\Gamma \vdash t :_{\beta} A} (\text{Cons})$$

$$\frac{\Gamma, \Delta \vdash B \text{ type} \quad \Gamma \vdash A \text{ type}}{\Gamma, x : A, \Delta \vdash B \text{ type}} (\text{Weak}_{ty}) \qquad \frac{\Gamma, \Delta \vdash b :_{\beta} B \quad \Gamma \vdash A \text{ type}}{\Gamma, x : A, \Delta \vdash b :_{\beta} B} (\text{Weak}_{tm})$$

$$\frac{x : A, \Delta \vdash B \text{ type} \quad \Gamma \vdash a :_{\alpha} A}{\Gamma, \Delta[a/x] \vdash B[a/x] \text{ type}} (\text{Subst}_{ty}) \qquad \frac{\Gamma, x : A, \Delta \vdash b :_{\beta} B \quad \Gamma \vdash a :_{\alpha} A}{\Gamma, \Delta[a/x] \vdash b[a/x] :_{\beta} B[a/x]} (\text{Subst}_{tm})$$

Theorem

Γ,

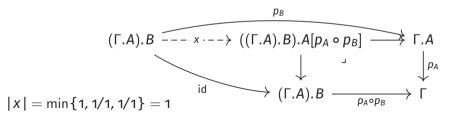
A fuzzy display-map category is sound and complete for the rules above.

The variable rule

aka: here is where I'm pedantic

starting from $\vdash \Gamma, x : A, \Delta \text{ ctx}$ we want $\Gamma, x : A, \Delta \vdash \star :_? A$ (Assume $\Delta = y : B$ a single type, the general case works the same way.)

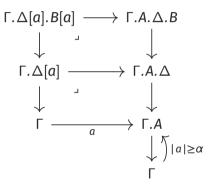
- F is a context
- ► A is a type in context Γ , hence there is a projection $p_A : \Gamma . A \rightarrow \Gamma$
- ▶ B is a type in context Γ , x : A, hence there is a projection p_B : (Γ .A). B → Γ .A



 $\Gamma, x : A, \Delta \vdash x : A$ (actually, the second A is $A[p_A \circ p_B]$)

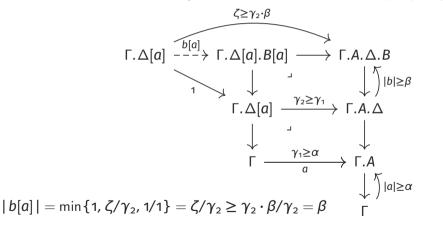
Substitution for types

starting from $\Gamma, x : A, \Delta \vdash B$ type $\Gamma \vdash a :_{\alpha} A$ we want $\Gamma, \Delta[a/x] \vdash B[a/x]$



Substitution for terms

starting from $\Gamma, x : A, \Delta \vdash b :_{\beta} B$ $\Gamma \vdash a :_{\alpha} A$ we want $\Gamma, \Delta[a/x] \vdash b[a/x] :_{?} B[a/x]$



Opinions

a $\textbf{Set}(\mathbb{M})\text{-}category~\mathcal{C}$	an agent in the system
a context	a set of beliefs
a type (in context)	a belief (and its premises)
a term of type A	a proof of the belief A
1/1C	tautologies
E/1C	facts induced by E
E/ ^α C	opinions induced by E with confidence $lpha$

Future work

- we have three possibilities to describe definitional equality
- study the behaviour of type constructors
- ▶ unpack more examples with different M's
- explore the dynamic side using Set(M)-valued sheaves (following Hansen-Ghirst 2020)

References

HANSEN, J., AND GHRIST, R.

Opinion dynamics on discourse sheaves, 2020.

HOFMANN, M.

Syntax and semantics of dependent types.

In Extensional Constructs in Intensional Type Theory. Springer, 1997, pp. 13–54.

Hyland, M., and Pitts, A.

The theory of constructions: Categorical semantics and topos-theoretic models.

Kelly, M.

Basic concepts of enriched category theory, vol. 64. CUP Archive, 1982.

TAYLOR, P.

Practical Foundations of Mathematics.

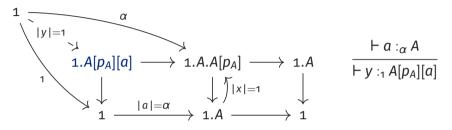
No. v. 59 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1999.

Adjoint school

Applications for the 2023 Adjoint School are now open! The deadline for applications is Monday, January 9, 2023 11:59 PM anywhere in the world.

Consider applying!

Something weird



In the notation we have used so far, y = x[a].

We have two types in the empty context, and they look very similar:

a type A

• a type $A[p_A][a]$ obtained by extending A with itself, and then substituting a but they are inherently different! How can we interpret this? If I can prove A with confidence α , I can prove (I can prove A with confidence α) with confidence 1.